Non Hodgkin Lymphoma treatment in elderly

Dr. Zaboli

Medical oncologist & Hematologist

Jan 2022

Elderly NHL

- Definition: Age > 60y in some studies or up to 80y
- No clear definition of 'elderly' and 'frail' patient
- Difference between biological & chronological age
- Competing comorbidities
- Alter the tolerability of chemotherapy
- Inferior outcomes in older patients
- 55% to 60% of NHL have a concurrent serious comorbidity
- Risk of death: twice in serious comorbidities(independent to IPI)

NHL OVERVIEW

Main B-cell lymphomas distribution

DLBCL: The commonest subtype

DLBCL

Presentation

De novo or after transformation: follicular lymphoma, CLL/SLL1

- Incidence in Europe
 - 3.8/100 000/year²
 - Increases with age³
 - Median age at diagnosis 64 years
- Risk factors⁴
 - Family history
 - Autoimmune disease
 - HIV+
 - Hepatitis C Virus+

Percent of New Cases by Age Group: NHL SEER 18 2009-2013, All Races, Both Sexes⁵

[.] Raut LS, et al., South Asian J Cancer 2014

Sant M, et al., Blood 2010

^{2.} Sant M, et al., blood 2010

DLBCL PROGNOSIS

Overall Survival according to age and time period Events occur early....

Monnereau A, et al., Survie des personnes atteintes de cancer en France 1989-2007. Lymphomes diffus à grandes cellules. Études à partir des registres des cancers du réseau FRANCIM.

^{2.} Monnereau A, et al., Lymphome diffus à grandes cellules B. Available on invs.santepubliquefrance.fr

DLBCL in elderly

60% of all lymphoid malignancies

SEER database:

23% received no treatment

Age > 80: one third of patients not receiving therapy

Grade 3/4 toxicity occur in over 50% of higher comorbidities

receiving< 6 cycles of therapy had a 91% higher mortality risk

Rituximab VS No treatment: 69% decreased mortality risk in R group

IMPORTANCE OF CELL-OF-ORIGIN MOLECULAR SUBTYPES

Hans classification

DLBCL subgroup	5-Yr OS, %		
PMBL	64		
GCB DLBCL	59		
ABC DLBCL	30		

From NEJM 2002, Rosenwald A, et al., The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma; 346: 1937-47.

Copyright © (2002) Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society;

Copyright © (2002) Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society; Rosenwald A, et al., J. Exp Med 2003 198,851-862. copyright 2003, with permission from the Rockefeller University Press;

Hans CP, et al. Blood 2004:103:275-282

More common in elderly

ABC/non GCB subgroup (GEP) $\rightarrow \rightarrow$ more aggressive

MYC expression

BCL2

Double expresser phenotype

Cytogenetic Complexity

Elevated ki-67

Comprehensive Geriatric Assessment (CGA)

Validated instrument evaluating functional age

assessments of chronologic

Assessment of: age

physical function

activities of daily living (ADL)

instrumental(I)ALDs

comorbidities

Independent predictor of outcomes in patients receiving chemotherapy

Useful in identifying patients whom full-dose chemotherapy is not beneficial

ADL

```
Six-item scale
```

Assess basic self-care activities

Include: feeding

dressing

bathing

toileting

transfer

continence

IADL

```
Assess a patient's basic abilities to maintain an independent life such as: preparing food laundry using the phone shopping ability to travel taking drugs
```

housekeeping handling money

CGA classifications

FIT: age < 80 with no limitations in ADL/(I)ADLs AND no serious comorbidities

Frail: limitations in (I)ADLs

serious or multiple significant comorbidities OR

are > age 80 with some limitations

Unfit: between both of them

Fit patients: ORR 87% and 5-year OS 55%

Unfit and frail patients: ORR 67% and 5-year OS 29%

Italian Lymphoma Foundation (FIL): fit survival 88%

not fit survival 56%

DLBCL treatment in elderly Trials

GELA LNH-98-5

RICOVER-60

LNH03-6B

UK NCRI R-CHOP14v21

patients ages 60–80 with newly diagnosed DLBCL

Benefit of adding Rituximab to CHOP

CHOP-14 vs R-CHOP-14 RICOVER-60 Trial: Patients Aged 61-80 Yrs

*Radiotherapy (36 Gy) was planned for patients with initial bulky disease or extranodal involvement.

CHOP-14 ± Rituximab in Elderly Patients With DLBCL (RICOVER-60 Trial): EFS

- EFS was significantly superior with R-CHOP-14 vs CHOP-14
 - P < .0001 for both 6 cycles and 8 cycles
- 8 cycles of R-CHOP-14 not superior to 6 cycles
 - 6 cycles R-CHOP-14 is preferred treatment for elderly patients

LNH03-6B GELA: R-CHOP-14 vs R-CHOP-21 in Elderly DLBCL Patients

- Primary endpoint: EFS
- Secondary endpoints: CR or CRu, ORR, PFS, DFS, OS, dose intensity, toxicity

LNH03-6B GELA Trial: Toxicities

Hematologic toxicities greater for R-CHOP-14

 Patients on R-CHOP-14 had higher rates of febrile neutropenia, hospitalization, and death due to toxicity

Delarue R, et al. ASH 2009. Abstract 406.

RCHOP problems in elderly

Not enroll patients older than 80 years

Most patients had a good performance status (ECOG-PS 0-1)

Dose dense protocol increase Hematologic and Cardiac toxicity

Consider Dose Attenuated chemotherapy protocols

Mini RCHOP in >80y/o: 2-y PFS 47% & OS 59%

R-COMP: CR 56–68% & 3–4 year survival 70% (similar outcomes to CHOP)

Nonpegylated liposomal doxorubicin (Myocet™) combination (R-COMP) chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL): results from the phase II EUR018 trial

S. Luminari¹, A. Montanini¹, D. Caballero², S. Bologna³, M. Notter⁴, M. J. S. Dyer⁵, A. Chiappella⁶, J. Briones⁷, M. Petrini⁸, A. Barbato⁹, L. Kayitalire⁹ & M. Federico^{1*}

¹Department of Oncology and Haematology, University of Modena and Reggio Emilia, Modena, Italy; ²Department of Haematology, University Hospital of Salamanca, Salamanca, Spain; ³Department of Hematology, Hospital of Brabois, Vandoeuvre les Nancy, Cedex, France; ⁴Department of Medicine III (Hematology and Oncology), Campus Benjamin Franklin, Charité, University of Berlin, Berlin, Germany; ⁵Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK; ⁶Division of Hematology 2, Department of Oncology, San Giovanni Battista Hospital and University, Torino, Italy; ⁷Department of Haematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; ⁸Department of Oncology, Transplant and Advances in Medicine, Section of Hematology, University of Pisa, Pisa, Italy and ⁹Cephalon, Inc., Frazer, PA, USA

Intergruppo Italiano Linfomi

R-miniCEOP: substituted epirubicin for doxorubicin

FIT elderly patients

phase 3 trial compared with R-CHOP

70% complete response with R-miniCEOP

Equivalent 5-y EFS with R-CHOP(46% VS 48%)

Double hit lymphoma in elderly

More common in older adults

Dose-adjusted-EPOCH-R in untreated MYC-rearranged aggressive B-cell lymphoma

50% of patients older than age 60

2-y EFS and OS were 75% and 91.7%

Dose-attenuated DA-(E)POCH in 2 studies of patients older than age 70

Results: 3-y OS of approximately 60%

no significant cardiac events

ORIGINAL ARTICLE

Reduced-dose EPOCH-R chemotherapy for elderly patients with advanced stage diffuse large B cell lymphoma

Wen-Hao Zhang 1 · Gao-Yang Li 1 · Yu-Jie Ma 1 · Zhi-Chao Li 1 · Yang Zhu 1 · Jun Chang 1 · Si-Guo Hao 1 · Rong Tao 1 ©

Received: 10 September 2017 / Accepted: 7 May 2018 / Published online: 12 May 2018

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

The standard treatment in elderly patients with diffuse large B cell lymphoma (DLBCL) has not yet been finely established. We investigated the efficacy and safety of rituximab with a reduced-dose of EPOCH chemotherapy in elderly patients who had advanced DLBCL with high IPI scores. The dose of 70% EPOCH was given to patients aged 75 to 79 years, and dose of 50% to patients aged over 80 years. Thirty-one patients with a median age of 79 years (range 75–86 years) were enrolled. Patients received a median of 6 cycle's chemotherapy. The complete response rate was 71.0%. The 3-year overall survival (OS) and progression-free survival rates were 62.8 and 60.3%, respectively. The most frequent grade 3/4 adverse effects were neutropenia (3 patients 7 events), febrile neutropenia (3 patients 5 events), and pulmonary infection (3 patients 3 events). Our study showed

Table 1 Select clinical trials in elderly patients with newly diagnosed diffuse large B-cell lymphoma

	Trial	Phase	Treatment	n	Age, frailty	ORR %	CR %	PFS %	OS %
Anthracycline conta	ining								
Full-dose	LNH98-5 [25,30]	3	CHOP R-CHOP	399	60–80	69 83	63* 75	30, 5 years 54	45, 5 years 58
	RICOVER [51]	3	R-CHOP + $Rx2R$ -CHOP + $Rx2$ + RT	166	60–80	6 13	76* 78	72, 3 years 73	77, 3 years 78
	UK NCRI R-CHOP14v21, subgroup [28, 29••]	3	R-CHOP14 R-CHOP21	604	>60	91 91	67 62	64, 5 years	69, 5 years
	LNH03-6B [27]	3	R-CHOP14 R-CHOP21	602	60–80	87 86	71 74	60, 3 years 62	69, 3 years 72
	Corazzelli, 2011 [34]	2	R-COMP-14	41	>60, cardiac comorbidity	73	68	77, 4 years	67, 4 years
	EUR018 [35]	2	R-COMP	75	≥60	71	57	69, 3 years	72, 3 years
	HEART01 [36•]	2	R-COMP	51	≥18, cardiac comorbidity	72	56	30, 3 years	22, 3 years
Dose-attenuated	Peyrade, 2011 [33]	2	R-Mini-CHOP	150	>80	73	62	47, 2 years	59, 2 years
	Musolino, 2011 [40]	2	DA-POCH-R	23	≥70	90	57	56, 3 years	54, 3 years
	Zhang, 2018 [39•]	2	DA-EPOCH-R, 50–70% dose reduction by age group	31	>70	87.1	71.0	62.8, 3 years	60.3, 3 years
	ANZINTER3 [37]	3	R-miniCEOP (epirubicin) R-CHOP	224	≥ 65	81 87	68 73	46, 5 years [†] 48	63, 5 years 62 [†]

Non anthracycline Containing Therapy

For frail patients or contraindication to anthracyclines

R-CEOP (rituximab, cyclophosphamide, etoposide, vincristine, and prednisone)

Gemcitabine based regimens

R-CVP

BR (bendamustine and rituximab)

Curable but are generally inferior to R-CHOP with long-term survival of 50%

British Columbia guidelines

81 DLBCL patients with contraindication to anthracycline

R-CEOP 3-4 cycles in limited stages and 6 cycles in advanced stages

5-y time to progression similar to RCHOP

OS was inferior in R-COEP group (49% vs. 64% p = 0.02)

US cohort: 2-y PFS in non-GCB and GCB were 26% and 85%,

Bendamustine + Rituximab

```
Patients ≥ 65 y
```

Poor candidates for R-CHOP

50% with an ECOG PS ≥ 2 (Frail)

Response rates were high

But: median OS was < 1 y

PFS was < 6 months

Similar results with R-GCVP and R-GemOX

Anthracycline-free regimens = expense of reduced efficacy

Novel approaches

REAL07 Phase II Study Eligibility and Endpoints

Eligibility (N = 49*)

- Age 60-80 y, fit
- CD20+ DLBCL or Grade IIIb FL
- Ann Arbor Stage II-IV
- IPI: Low-intermediate/intermediate-high/high risk
- No peripheral neuropathy, CNS disease or recent DVT
- No prior chemotherapy or prior malignancies in past 3 years

<u>Primary endpoints:</u>Overall response rate (ORR) and complete response (CR)

<u>Secondary endpoints:</u>Included 2-year overall survival (OS) and 2-year progression-free survival (PFS)

Chiappella A et al. Proc ASH 2012; Abstract 903.

^{*} Includes 9 patients treated at MTD in Phase I

REAL07 Phase II Study Design

Treatment cycles

Lenalidomide at MTD: 15 mg daily on days 1-14 (Vitolo U, ASH 2010)

(1) Rituximab 375 mg/m²
Cyclophosphamide 750 mg/m²
Doxorubicin 50 mg/m²

Vincristine 1.4 mg/m² (capped at 2.0 mg)

Prednisone 40 mg/m² on days 1-5

Prophylaxis included: GCSF or PEG-GCSF, low-molecular-weight heparin or low-dose aspirin, co-trimoxazole

Final Response After 6 Cycles of LR-CHOP21

PR = partial response; NR = no response
Chiappella A et al. *Proc ASH* 2012; Abstract 903.

REAL 07 trial results

Add lenalidomide seemed to diminish the negative prognostic impact of COO

Cell Of Origin

GCB: 5y-PFS was 52.8% 5y-OS was 68.6%

Non GCB: 5y-PFS was 64.5% 5y-OS was 74.1%

REMARC study

Maintenance lenalidomide in elderly patients responding to R-CHOP Lenalidomide 25 mg/day or placebo for 21/28 days for 24 months Statistically significant improvement in PFS in maintenance group BUT

Absolute difference was small (75% vs. 80% PFS at 2 years)

No difference in OS

Associated with increased toxicity

PHOENIX: Study Design

International, randomized, double-blind phase III trial^[1]

Stratified by R-IPI, region (US/Western Europe vs rest of world), no. prespecified R-CHOP cycles (6 vs 8)

Patients with untreated non-GCB

DLBCL determined centrally by Hansbased IHC; stage II-IV measurable
disease; R-IPI ≥ 1; ECOG PS 0-2
(N = 838)

Ibrutinib 560 mg PO QD + **R-CHOP*** (n = 419)

Placebo + R-CHOP* (n = 419) *Rituximab 375 mg/m² IV on Day 1, cyclophosphamide 750 mg/m² on Day 1, doxorubicin 50 mg/m² IV on Day 1, vincristine 1.4 mg/m² IV on Day 1, prednisone or equivalent 100 mg PO QD on Days 1-5. G-CSF and antibiotics permitted.^[1,2]

- Primary endpoint: EFS in ITT population and ABC subgroup (determined retrospectively by gene expression profiling)
 - EFS events defined as PD, relapse from CR, starting subsequent disease-specific tx for PETpositive/biopsy-proven residual disease after ≥ 6 cycles of R-CHOP, or any-cause death

Secondary endpoints: CR rate, OS, PFS, safety

6 or 8 x 21-d cycles

- Response evaluated with Revised Response Criteria for Malignant Lymphoma^[3]
- Exploratory stepwise analyses of potential interactions between treatment and prespecified BL characteristics for EFS and, if significant, PFS and OS

PHOENIX: EFS by Age

EFS Outcome in ITT Population, Event/N	Ibrutinib + R-CHOP	Placebo + R-CHOP	HR (95% CI)
Age < 65 yrs	54/231	81/259	0.71 (0.51-1.01)
Age ≥ 65 yrs	64/188	48/160	1.24 (0.85-1.80)

- In preplanned exploratory stepwise analyses, age was the only BL characteristic that significantly interacted with treatment for EFS, PFS, and OS
- Age met significance criteria both as a continuous and a categorical variable
 - HR for OS favored ibrutinib + R-CHOP in age categories of < 50 yrs, 50-55 yrs, and 55-60 yrs

PHOENIX: AEs and Treatment Exposure by Age

- Among patients aged < 60 yrs and ≥ 60 yrs, AEs were similar between treatment arms
- Higher rates of both serious AEs and AEs leading to treatment discontinuation were observed in older patients receiving ibrutinib + R-CHOP vs placebo + R-CHOP
 - Primary TEAEs leading to dose reduction/discontinuation were febrile neutropenia and peripheral neuropathy
- In the safety population, drug exposure was lower with ibrutinib + R-CHOP vs placebo + R-CHOP, particularly among older patients

Patients Receiving ≥ 6 Cycles of Treatment, n (%)	Age <	60 Yrs	Age ≥ 60 Yrs		
	Ibrutinib + R-CHOP (n = 154)	Placebo + R-CHOP (n = 185)	Ibrutinib + R-CHOP (n = 262)	Placebo + R-CHOP (n = 233)	
With R-CHOP	143 (92.9)	172 (93.0)	193 (73.7)	207 (88.8)	
With ibrutinib or placebo	138 (89.6)	170 (91.9)	178 (67.9)	202 (86.7)	

PHOENIX: Conclusions

In patients with non-GCB DLBCL, first-line ibrutinib + R-CHOP did not prolong EFS in the ITT population or in those with ABC DLBCL vs placebo + R-CHOP

Ibrutinib + R-CHOP benefit and safety profiles varied by age

- Among those aged < 60 yrs, ibrutinib + R-CHOP improved EFS, PFS, and OS vs placebo + R-CHOP
 - HR: for EFS, 0.579 (95% CI: 0.380-0.881); for OS, 0.330 (95% CI: 0.162-0.673)
- Among those aged ≥ 60 yrs, ibrutinib + R-CHOP showed higher rates of serious AEs and AEs leading to discontinuation of R-CHOP, along with decreased drug exposure

Investigators concluded that risk outweighs benefit of adding ibrutinib to R-CHOP in older patients; observed benefit in younger patients requires confirmation in prospective trial

Randomized Phase III Trial of Ibrutinib and Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Non-Germinal Center B-Cell Diffuse Large B-Cell Lymphoma

Anas Younes, MD1; Laurie H. Sehn, MD2; Peter Johnson, MD3; Pier Luigi Zinzani, MD, PhD4; Xiaonan Hong, MD5; Jun Zhu, MD6; Caterina Patti, MD7; David Belada, MD, PhD8,9; Olga Samoilova, PhD10; Cheolwon Suh, MD, PhD11; Sirpa Leppä, MD12,13; Shinya Rai, MD, PhD¹⁴; Mehmet Turgut, MD, PhD¹⁵; Wojciech Jurczak, MD, PhD¹⁶; Matthew C. Cheung, MD¹⁷; Ronit Gurion, MD^{18,19}; Su-Peng Yeh, MD²⁰; Andres Lopez-Hernandez, MD²¹; Ulrich Dührsen, MD²²; Catherine Thieblemont, MD, PhD^{23,24}; Carlos Sergio Chiattone, MD, PhD²⁵; Sriram Balasubramanian, PhD²⁶; Jodi Carey, RN²⁷; Grace Liu, PhD²⁸; S. Martin Shreeve, MD, PhD²⁶; Steven Sun, PhD28; Sen Hong Zhuang, MD, PhD28; Jessica Vermeulen, MD, PhD29; Louis M. Staudt, MD, PhD30; and Wyndham Wilson, MD, PhD30; on behalf of the PHOENIX investigators

OBINUTUZUMAB

Novel CD20 antibody

Combination with mini-CHOP

phase 2 study

patients with age ≥ 65 and unfit

Compared with R-mini CHOP

OUTCOME: similar to R-mini CHOP

CR:42% 2-y PFS:49%

OS:68%

Journal of Geriatric Oncology

Volume 11, Issue 1, January 2020, Pages 37-40

Obinutuzumab and miniCHOP for unfit patients with diffuse large B-cell lymphoma. A phase II study by Fondazione Italiana Linfomi

Francesco Merli ^a $\stackrel{\bowtie}{\sim}$ Federica Cavallo ^b, Flavia Salvi ^c, Alessandra Tucci ^d, Gerardo Musuraca ^e, Luca Nassi ^f, Michele Merli ^g, Monica Tani ^h, Guido Gini ⁱ, Angela Ferrari ^a, Anna Lia Molinari ^j, Anna Marina Liberati ^k, Annarita Conconi ^l, Paola Matteucci ^m, Alessia Bari ⁿ, Renato Scalone ^o, Simone Ferrero ^b, Manuela Zanni ^c

Hypomethylating agents

Azacitidine has been used in older patients with AML and MDS

Oral azacitidine: FDA-approved for maintenance therapy in AML

who are unable to receive additional intensive chemotherapy

SWOG S1918 trial: compare R-miniCHOP to R-miniCHOP with oral azacitidine

442 Patients ≥ age 75

New diagnosed aggressive B-cell NHLs

stage II bulky, stage III, or stage

Use ctDNA as prognostic marker and response evaluation

ARTICLE IN PRESS

JGO-01212; No. of pages: 7; 4C:

Journal of Geriatric Oncology xxx (xxxx) xxx

Contents lists available at ScienceDirect

Journal of Geriatric Oncology

Clinical Trial Protocol

SWOG 1918: A phase II/III randomized study of R-miniCHOP with or without oral azacitidine (CC-486) in participants age 75 years or older with newly diagnosed aggressive non-Hodgkin lymphomas – Aiming to improve therapy, outcomes, and validate a prospective frailty tool

Elizabeth A. Brem ^{a,*}, Hongli Li ^{b,c}, Anne W. Beaven ^d, Paolo F. Caimi ^e, Leandro Cerchietti ^f, Ash A. Alizadeh ^g, Rebecca Olin ^h, N. Lynn Henry ⁱ, Hildy Dillon ^j, Richard F. Little ^k, Cara Laubach ^l, Michael LeBlanc ^{b,c}, Jonathan W. Friedberg ^m, Sonali M. Smith ⁿ

^a Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA, USA

b SWOG Statistics and Data Management Center, Seattle, WA, USA

Non-anthracycline co	ontaining								
	Merli, 2007 [47]	3	Mini-CEOP (etoposide) P-VEBEC	232	>65	90 54	78 66	48, 5 years [‡] 57	32, 5 years
	Rashidi, 2015 [44•]	2	R-miniCEOP (etoposide)	26	> 60	75	68	49, 2 years	59, 2 years
	Storti, 2018 [16]	2	BR	49	> 70, Frail by CGA	62	53	38, 2 years	51, 2 years
	Park, 2016 [49]	2	BR	23	≥65, Unfit for anthracycline	78	52	5.4 months (median)	10.2 months (median)
	Fields, 2014 [50]	2	R-GCVP	62	\geq 18, Unfit for anthracycline	61.3	29	50, 2 years	56, 2 years
	Qui-Dan, 2018 [46]	2	R-GemOx	60	> 70	49	47	49, 3 years	65, 3 years
Novel agent combina	ations								
Lenalidomide	REAL07 [54•]	2	Lenalidomide + RCHOP	14	60-80, fit by CGA	90	86	80, 2 years	92, 2 years
	REMARC [58•]	3	RCHOP + R maintenance RCHOP + placebo	650	60–80	n/a	n/a	80, 2 years 75	87, 2 years 89
Novel anti-CD20	Flinn, 2019 [60]	2	Bendamustine Ofatumumab	21	> 70, unfit for anthracycline	90.5	33.3	8.6 months (median)	12 months (median)
	Merli, 2020 [15••]	2	Obinutuzumab + miniCHOP	34	\geq 65, unfit by CGA	66	42	49, 2 years	68, 2 years
	Peyrade, 2017 [59•]	2	Ofatumumab + miniCHOP	120	> 80	68	56	68, 2 years	64.7, 2 years

^{*†‡} complete response and complete response uncertain; event-free survival; relapse-free survival

Relapsed DLBCL treatment in elderly

Poor prognosis

ASCT for younger

Increase toxicity

Consider palliative care

ASCT, autologous stem cell transplantation.

ESMO CLINICAL PRACTICE GUIDELINES: RECOMMENDED TREATMENT STRATEGIES IN DLBCL

First relapse/progress

Eligible for transplant	Not eligible for transplant
Platinum-based chemotherapy regimens (i.e. R-DHAP, R-ICE, RGDP) as salvage treatment	
For chemosensitive patients: R-HDCT with ASCT as remission consolidation	Platinum- and/or gemcitabine- based regimens
Consider allogeneic transplantation in patients relapsed after R- HDCT with ASCT	Clinical trials with novel drugs
or in patients with poor-risk factors at relapse	

R, rituximab; HDCT, high-dose chemotherapy; ASCT, autologous stem-cell transplantation; DHAP, cisplatin, cytarabine, dexamethasone; ICE, ifosfamide, carboplatin, etoposide; GDP, cisplatin, gemcitabine, dexamethasone

Additional Therapies For Relapsed DLBCL

Agent	Response Rate (ORR)	Median PFS	Toxicities
Ibrutinib (phase I/II) ¹	ABC = 37% (CR 16%) GCB = 5% (CR = 0%)	2 .02 mo 1.31 mo	Cytopenias, arthralgias
Lenalidomide (phase II) ²	ORR = 28% (CR = 22%)	2.8 mo	Cytopenias
Selinexor (phase II) ³	ORR = 28% (CR = 12%)	2.6 mo	Cytopenias, GI

Lenalidomide in relapsed DLBCL

102 patients of DLBCL

Received at least 2 prior treatments

Randomized 1:1 to lenalidomide or other treatments

ORR of 27.5% in lenalidomide versus 11.8% in others

Median PFS:13.6w vs 7.9 w

Greater improvements in non-GCB compared with GCB (15.1 vs 7.1w)

Conclusions: benefit of Lenalidomide

more evident in the non-GCB

more pronounced in the GEP-defined ABC

Lenalidomide in relapsed DLBCL

Published OnlineFirst April 5, 2017; DOI: 10.1158/1078-0432.CCR-16-2818

Cancer Therapy: Clinical

A Phase 2/3 Multicenter, Randomized,
Open-Label Study to Compare the Efficacy and
Safety of Lenalidomide Versus Investigator's
Choice in Patients with Relapsed or Refractory
Diffuse Large B-Cell Lymphoma

Myron S. Czuczman¹, Marek Trněný², Andrew Davies³, Simon Rule⁴, Kim M. Linton⁵, Nina Wagner-Johnston⁶, Randy D. Gascoyne⁷, Graham W. Slack⁷, Pierre Brousset⁸, David A. Eberhard⁹, Francisco J. Hernandez-Ilizaliturri¹, Gilles Salles¹⁰, Thomas E. Witzig¹¹, Pier Luigi Zinzani¹², George W. Wright¹³, Louis M. Staudt¹⁴, Yandan Yang¹⁴,

Novel agents in development for DLBCL

Class	Target	Agent	Overall response rate (%)	Complete response rate (%)	Reference
Monoclonal antibody	CD19	tafasitamab + lenalidomide	60	43	Salles et al
	CD19	Ioncastuximab tesirine	59	41	Kahl et al
Antibody drug		polatuzumab vedotin	52	13	Palanca-Wessels et al
conjugates	CD79b	polatuzumab vedotin + BR	45	40	Sehn et al
		versus BR	17.5	17.5	Oeim et ai
Bispecific	CD19/CD3	blinatumomab	43	19	Viardot et al
·	CD20/CD3 mosunetuzumab		35	19	Schuster et al
antibodies	CD20/CD3	glofitamab	38	31	Dickinson et al
Other target	BCL2	venetoclax	18	12	Davids et al
inhibitors	XPO1	selinexor	28	12	Kalakonda et al
Checkpoint	PD-1	nivolumab	≤ 10	≤ 3	Ansell et al
inhibitors	CD47	magrolimab	40	33	Advani et al

DLBCL Treatment Options for Second- and Later Lines, Continued

Consolidation After Alternate Second-Line Therapy

Allogeneic hematopoietic cell transplant (nonmyeloablative or myeloablative) for patients in CR/PR after alternative second-line therapy

Third-Line and Subsequent Therapy Options

Anti-CD19 CAR T-cell therapy (only after ≥2 previous lines of therapy):

Axicabtagene ciloleucel

Lisocabtagene maraleucel

Tisagenlecleucel

Loncastuximab tesirine (only after ≥2 previous lines of therapy)

Selinexor (only after ≥2 previous lines of therapy, including patients with PD after transplantation or CAR T-cell therapy)

CAR-T cell

Curable options in older patients with relapsed DLBCL

Either relapsed or ineligible for autologous transplantation

Approved for relapsed or refractory DLBCL patients including older adults

ZOMA1 trial

Chimeric Antigen Receptor Modified T cells (CAR T cells)

Long-Term Follow-Up of Pivotal CART Studies

4-year update ZUMA-1

Median f/u 51.1 mos, median OS 25.8 mos 4-year OS rate was 44%

a. Locke FL, et al. Lancet Oncol. 2019;20:31-42; b. Schuster SJ, et al. N Engl J Med. 2019;380:45-56; c. Abramson JS, et al. Lancet. 2020;396(10254):839-852; Jacobson et al. ASH 2020. Abstract 1187.

Other Possible Treatment Options: Relapsed DLBCL

- Other monoclonal antibodies for relapsed DLBCL
 - Tafasitamab + Lenalidomide

Tafasitamab CD19 Monoclonal Antibody

Tafasitamab (MOR208), Fcengineered, anti-CD19 mAb[a-d]

- ADCC
- ADCP
- Direct cell death
- Encouraging activity in patients with NHL, with long DOR in R/R DLBCL

Lenalidomide (LEN)[c,e-k]

- T cell and NK cell activation/expression
- Direct cell death
- Demonstrated activity as an antilymphoma agent, alone or in combination
- Approved for treatment of MCL and FL/MZL

@Mediscape, LLC

Potentiation of activity by combining tafasitamab and lenalidomide in vivo and in vitro with lenalidomide enhancing tafasitamab-medicated NK activation and ADCC^[b]

ADCC, antibody-dependent cellular cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; DOR, duration of remission; FL, follicular lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; NK, natural killer; NHL, non-Hodgkin lymphoma; R/R, relapsed/refractory.

a. Horton HM, et al. Cancer Res. 2008;68:8049-8057; b. Awan FT, et al. Blood. 2010;115:1204-1213; c. Jurczak W, et al. Ann Oncol. 2018;29:1266-1272; d. Data on file. CSR. MorphoSys. Boston, MA; e. Richter J, et al. Blood. 2013;121:423-430; f. Wu L, et al. Clin Cancer Res. 2008;14:4650-4657; g. Lapalombella R, et al. Blood. 2008;112:5180-5189; h. Wiernik PH, et al. J Clin Oncol. 2008;26:4952-4957; i. Witzig TE, et al. Ann Oncol. 2011;22:1622-1627; j. Czuczman MS, et al. Clin Cancer Res. 2017;23:4127-4137; k. Lenalidomide [PI]. Approved 2005. Revised 2019.

L-MIND Study Design

- Sample size suitable to detect ≥ 15% absolute increase in ORR for Tafasitamab/LEN combination vs. LEN monotherapy at 85% power, 2-sided alpha of 5%
- Mature Data: Primary Endpoint Analysis with data cut-off 30 Nov 2018; minimum Follow-Up 12 months, median Follow-Up 17.3 months

Salles G, et al. Lancet Oncol. 2020;21:978-988.

Outcomes by Prior Lines of Therapy

Tafasitamab plus LEN	1 Prior Treatment (N = 40)	≥ 2 Prior Treatments (N = 40)	Overall (N = 80)
Best objective response, n (%)			
CR	19 (47.5)	13 (32.5)	32 (40.0)
PR	8 (20.0)	6 (15.0)	14 (17.5)
SD	7 (17.5)	6 (15)	13 (16.3)
PD	5 (12.5)	8 (20.0)	13 (16.3)
NE	1 (2.5)	7 (17.5)	8 (10.0)
ORR (CR + PR), n (%) [95% CI]	27 (67.5) [50.9-81.4]	19 (47.5) [31.5–63.9]	46 (57.5) [45.9–68.5]
Median DoR, months (95% CI)	43.9 (9.1-NR)	NR (15.0-NR)	43.9 (26.1-NR)
Median PFS, months (95% CI)	23.5 (7.4-NR)	7.6 (2.7-NR)	11.6 (6.3-45.7)
Median OS, months (95% CI)	45.7 (24.6-NR)	15.5 (8.6-NR)	33.5 (18.3-NR)

L-MIND Trial Key Efficacy Data: OS and AEs

Median OS after ≥ 35 months:

Overall: 33.5 mos

1 prior line: 47.5 mos

≥ 2 prior lines: 15.5 mos

Study suggests this is an effective and well-tolerated non-chemotherapeutic approach for R/R DLBCL

TEAEs, n (%)	All Grades (≥ 10%) All patients (N = 81)	Grade ≥ 3 (> 1 patient) All patients (N = 81)
Neutropenia	41 (50.6)	40 (49.4)
Anemia	30 (37.0)	6 (7.4)
Thrombocytopenia	25 (30.9)	14 (17.3)
Diarrhea	29 (35.8)	1 (1.2)
Asthenia	20 (24.7)	2 (2.5)
Cough	22 (27.2)	1 (1.2)

TEAE, treatment-emergent adverse event.

Düll J, et al. Presented at: ICML, Virtual Edition, June 18-22, 2021. Abstract 028.

Polatuzumab Vedotin: CD79b ADC

 Microtubule inhibitor MMAE conjugated to CD79b monoclonal antibody via a protease-cleavable peptide linker

ADC, antibody-drug conjugate; MMAE, monomethyl auristatin E VC, valine-citrulline. Camus V, et al. Future Oncol. 2021;17:127-135.

POLARIX R-CHOP vs R-CHP + Polatuzumab

N = 875

1:1

- Key eligibility criteria
- Previously untreated DLBCL
- Stage II to IV disease
- IPI ≥ 2
- ECOG PS ≤ 2

Arm A: Polatuzumab Vedotin

1.8 mg/kg + R-CHP + Vincristine
Placebo

Q21D x 6 cycles

Rituximab 375 mg/m² Cycles 7-8

Post-treatment follow-up

Stratified

- IPI Score (2 vs 3-5)
- Bulky Disease (present vs absent)
- Region

Arm B: R-CHOP +
Polatuzumab Vedotin Placebo
Q21D x 6 cycles

Rituximab 375 mg/m² Cycles 7-8

ClinicalTrial.gov NCT03274492

Selinexor SINE Inhibitor

- Selinexor: First-in-Class, Oral Selective Inhibitor of Nuclear Export (SINE) compound^[a]
- XPO1 (part of the Nuclear Pore Complex) is highly expressed in DLBCL
- Responsible for protein traffic between cell nucleus and cytoplasm
- Inhibition leads to nuclear accumulation and reactivation of tumor suppressor proteins and reduction in oncoproteins^[b]

Selinexor – Third Line Relapsed DLBCL: Mechanism of Action

- XPO1 is the major nuclear export protein for:
 - TSPs (e.g., p53, IkB and FOXO)
 - eIF4E-bound oncoprotein mRNAs (e.g., c-Myc, Bcl- xL, cyclins)
- Selinexor is an oral selective XPO1 inhibitor;
 preclinical data supports that XPO1 inhibition:
 - Reactivates multiple TSPs relevant to NHL, including p53, p21, IkB and FOXO
 - Promotes nuclear localization of eIF4e, which is overexpressed in most B-cell lymphomas
 - Reduces c-Myc, Bcl-2, and Bcl-6 levels
 - Toxicities: GI toxicities may be prohibitive

ASH 2021 Key Abstracts: Relapsed DLBCL

- LBA-1: POLARIX Study: Pola-R-CHP vs R-CHOP for DLBCL
- Abstract 91: Liso-cel vs ASCT as second line therapy (Transform Study)
- Abstract 2: Axi-Cel vs ASCT as second line therapy (ZUMA-7)
- LBA-6: Tisagenlecleucel vs ASCT as second line therapy (Belinda Study)
- Abstract 739: Axi-Cel for front-line high risk DLBCL (ZUMA-12)
- Abstract 6: Circulating Tumor DNA in patients with CNS Lymphoma

Mosunetuzumab: A Bispecific Antibody Targeting CD3 and CD20

Full-length humanized IgG1 antibody

- Longer half-life than fragment-based drug formats
- PK properties enable once weekly to q3w dosing
- Does not require ex-vivo T-cell manipulation
- Off the shelf, readily available treatment

Mechanism of action

- Redirects T-cells to engage and eliminate malignant B-cells
- Conditional agonist: T-cell activation dependent on B-cell engagement
- Amino-acid substitution (N297G) to inactivate
 ADCC and avoid destruction of engaged T cells

Mosunetuzumab + Polatuzumab Vedotin in R/R B-NHL Study Design and AEs

M-Pola Dosing Schedule

Summary of AEs, n (%)	R/R B-NHL All cohorts (N=22)
Any AE	22 (100.0)
Treatment-related	19 (86.4)
Serious AE	8 (36.4)
Treatment-related	5 (22.7)
Gr 3-4 AE	11 (50.0)
Treatment-related	11 (50.0)
Gr 5 (fatal) AE	2 (9.1)
Treatment-related	0
AE leading to dose modification	8 (36.4)
AE leading to treatment discontinuation	3 (13.6)

Most frequent TRAEs: neutropenia and nausea (40.9%), followed by fatigue and diarrhea (36.4%)

AE, adverse event; B-NHL, B-cell non-Hodgkin lymphoma; CR, complete response; Gr, grade; PR, partial response; R/R, relapsed/refractory; SD, stable disease. Ghosh N, et al. Presented at: EHA2021 Virtual Congress; June 9-17, 2021. Abstract S222.

Therapy of DLBCL 2021

Table 1Prospective studies in newly diagnosed diffuse large B cell lymphoma (DLBCL) focused on older patients and/or those with comorbidities.

Regimen (reference)	Key inclusion criteria	Median age (years)	Arms	2 year OS	Pre-phase?	Geriatric assessment?
R-miniCHOP [3]	≥ 80 years	83	R-miniCHOP	59%	No	None
R-70%CHOP [25]	≥ 70 years	76	R-70%CHOP	~65%	No	None
SENIOR Study [17]	≥ 80 years	83	1) R-miniCHOP 2) R-miniCHOP with lenalidomide 10 mg	1) 66% 2) 65.7%	Yes	None
Ofatumumab-miniCHOP [26]	≥ 80 years	83	1000 mg ofatumumab + miniCHOP	64.7%	Yes	None
Obinatuzumab-miniCHOP [27]	Age > 65, unfit via FIL tool	82	100 mg obinutuzumab + miniCHOP	49%	No	FIL tool for entry
R-CGVP [28]	EF ≤ 50% or EF > 50% with cardiac co-morbidities	76	rituximab, cyclophosphamide, gemcitabine, vincristine and prednisone	55.8%	No	None
R-miniCEOP [21]	"Fit," age > 65 years	72	1) R-CHOP 2) R-miniCEOP	1) ~65% 2) ~70%	No	ADLs and CIRS-G. "Fit" was defined at ADL score of or better, fewer than grade 3 CIRS-G co-morbidities and no grade 4 co-morbidities.
Mosuntuzumab [29,30]	≥ 80 years OR 60–79 years and impairment in 1 or more ADL or IADL or impairment of renal, cardiac, or haptic function precluding use of chemoimmunotherapy	84	CD20-CD3 bi-specific antibody	Not yet reported; ORR 67.7% (41.9% CR)	No	ADL or IADL assessment for inclusion for those <80

THANK YOU