

# يتميز ككره سراسر البخزيج الكولوثر وبالولوثر اليرائز (مال ١٤٠٠)



### **Treatment Advances in Acute Myeloid Leukemia**



Presented by: Dr. Abolfazl Khalafi-Nezhad

Hematologist and medical oncologist

(Assistant Professor at Shiraz University of Medical Sciences)

January 2022

Median age at diagnosis: 68-70+ years

5-yr survival is 28.3%

#### Incidence of AML by Age Group





SEER 2018 data

https://seer.cancer.gov/statfacts/html

### Principles of AML therapy

Evaluate eligibility for intensive chemotherapy

Consider age, performance status, comorbidities, cytogenetics/molecular genetics, patient wish



Young, fit patients

Induce remission, treatment in curative intention

Treatment strategy

Goals of therapy

Intensive induction and consolidation therapy

Allogenic HCT in patients with approximately >40% risk of relapse



Older, less fit patients

Control disease progression, improve survival and QoL

Lower intensity treatment: LDAC or HMA

Clinical trials with investigational drugs
Best supportive care

## AML Risk Stratification by Cytogenetics and Molecular Abnormalities (ELN Recommendations)

| Risk Status  | Cytogenetics                                                                                                                                                                             | Molecular Abnormalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Favorable    | t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i><br>inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i>                                                                                  | Mutated <i>NPM1</i> without <i>FLT3</i> -ITD or with <i>FLT3</i> -IT |
| Intermediate | t(9;11)(p21.3;q23.3); MLLT3-KMT2A                                                                                                                                                        | Mutated NPM1 and FLT3-ITDhigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | Cytogenetic abnormalities not classified as favorable or adverse                                                                                                                         | Wild-type NPM1 without FLT3-ITD or with FLT3-ITD or with adverse-risk genetic lesions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Adverse      | t(6;9)(p23;q34.1); DEK-NUP214 t(v;11q23.3); KMT2A rearranged t(9;22)(q34.1;q11.2); BCR-ABL1 inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1) -5 or del(5q); -7; -17/abn(17p) | Wild-type <i>NPM1</i> and <i>FLT3</i> -ITD <sup>high</sup> Mutated <i>RUNX1</i> Mutated <i>ASXL1</i> Mutated <i>TP53</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Complex karyotype, monosomal karyotype                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# Cytogenetic Entities and Survival in AML (2008 WHO Classification)

OS in MRC/NCRI AML trials (N = 5876 patients, 16-59 yrs of age)



### **Selected Targets for AML Treatment**

- Targets that can be distinctly identified
  - Cell surface epitopes: CD33, CD123, NGK2D
  - Activated kinases: FLT3, KIT
  - Other gain-of-function mutations: mutant *RAS, IDH1/2*
  - Spliceosome inhibition: U2AF1, SF3B1

- Targets that are less distinct
  - Internal antigens: WT1, unknown antigen (vaccines, CPI)
  - Activated transcription (bromodomain)
  - (Anti)-apoptotic machinery (BCL-2, MDM2)
  - Histone methylation (DOT1L in MLL rearranged)
  - Transcriptional repression (HDAC, DNAMT)
  - Mitotic machinery (PLK)
  - Other altered cellular biology (nuclear export protein, altered PS on cell surface, Hedgehog)
  - Cytotoxics (vosaroxin, sapacitabine)



#### **AML Treatment Overview**





## Low-Dose (Nonintensive) Therapy for Older Patients With AML

- Chemotherapy
  - Cure rate ≤15% in patients >60 yr of age
  - Median survival: 6-10 mo
  - LDAC
  - HMA
    - Azacitidine, decitabine (SC or IV)
- Targeted agents
  - Venetoclax plus HMA (superior to venetoclax + LDAC)

## VIALE-A: Azacitidine ± Venetoclax in Treatment-Naive AML Ineligible for Standard Induction Therapy



DiNardo. NEJM. 2020;383:617.

## VIALE-C: LDAC ± Venetoclax in Treatment-Naive AML Ineligible for Standard Induction Therapy

#### Preplanned OS Analysis (Median F/u: 12.0 mo)

#### OS Analysis With 6 Additional Mo of F/u



|                   | Response<br>Rate | Median OS<br>Mo. (95% CI) | Transfusion<br>Independence |    | Quality<br>of Life |
|-------------------|------------------|---------------------------|-----------------------------|----|--------------------|
| Venetoclax + LDAC | 48%              | 8.4 (5.9-10.1)            | 37%                         |    | •                  |
| Placebo + LDAC    | 13%              | 4.1 (3.1-8.1)             | 16%                         | 13 | _                  |

### **Venetoclax Dosing in AML**

| Dosing | Venetoc        | Venetoclax + HMA                                                             |                 | Venetoclax + LDAC                 |  |
|--------|----------------|------------------------------------------------------------------------------|-----------------|-----------------------------------|--|
| Dosing | Venetoclax     | НМА                                                                          | Venetoclax      | LDAC                              |  |
| Day 1  | 100 mg         | Aza 75 mg/m <sup>2</sup> IV or SC, D1-7 or Dec 20 mg/m <sup>2</sup> IV, D1-5 | 100 mg          | 20 mg/m <sup>2</sup><br>SC, D1-10 |  |
| Day 2  | 200 mg         |                                                                              | 200 mg          |                                   |  |
| Day 3  | 400 mg         |                                                                              | 400 mg          |                                   |  |
| Day 4  |                |                                                                              | 600 mg          |                                   |  |
|        |                | <b>+</b>                                                                     | <b>+</b>        | <b>+</b>                          |  |
|        | Treat until di | sease progression                                                            | n or unacceptal | ole toxicity                      |  |

For all patients prescribed venetoclax

- WBC <25 x 10<sup>9</sup>/L required
- Take venetoclax tablets with food and water at approximately the same time each day; swallow whole, do not crush or break first
- No biomarker or cytogenetic testing required prior to initiation
- Assess individual patient risk of TLS

### Glasdegib in AML and MDS

 Phase II study in pts with AML and high-risk myelodysplastic syndrome (N = 132)

|                            | LDAC +<br>Glasdegib<br>(n = 88) | LDAC<br>Alone<br>(n = 44) |
|----------------------------|---------------------------------|---------------------------|
| Median age, yrs<br>(range) | 77 (63-92)                      | 75 (58-83)                |
| Good/Int CG, n (%)         | 52 (60)                         | 25 (57)                   |
| CR/CRi (n, %)              | 20 (23)                         | 2 (4.5)                   |
| Median OS (mos)            | 8.8 mos                         | 4.9 mos                   |



- Inhibition of Hh signaling pathway increases sensitivity to chemotherapy and reduces leukemic stem cell growth
- Gladegib is currently in Phase 3 development for AML in combination with AZA or 7+3

# Targeted Treatment Options for Patients With FLT3 or IDH1/2 Mutations



## Targeted Treatment Options for Patients With AML and FLT3 Mutations

- Overexpression of FLT3 common in AML
- *FLT3* mutations present in  $\sim$  30% patients with AML
  - 23%: internal tandem duplication
  - 7%: point mutation in tyrosine kinase domain
- Mutations constitutively activate FLT3
  - Ligand-independent cell growth
- FLT3-ITD associated with increased frequency of relapse, short survival
  - Allelic ratio, ITD insertion site



Activated proliferation and pro-survival pathways7

## Outcomes in Young Adults With AML by FLT3-ITD Level





#### **Mutation Level**

■ Low: < 25%

■ Intermediate: 25% to 50%

■ High: > 50%

### **FLT3 Inhibitors**



#### Staurosporine<sup>1,2</sup>

Reference compound



#### Midostaurin<sup>1,3</sup>

No activity in relapse<sup>4</sup> FDA approved in front line when combined with chemotherapy<sup>5</sup>



#### Sorafenib<sup>1,3</sup>

Some activity at relapse, but not well tolerated<sup>6</sup>



#### Quizartinib<sup>1,3</sup>

OS benefit in R/R AML<sup>7</sup>



#### Gilteritinib<sup>1,3</sup>

FDA approved in R/R AML as detected by FDA-approved test<sup>8</sup>



#### Crenolanib<sup>1,3</sup>

Some activity at relapse<sup>9</sup>

## RATIFY: First-line Chemo ± Midostaurin in *FLT3*-Mutated AML



<sup>\*</sup>Hydroxyurea allowed for  $\leq 5$  days prior to induction therapy.



P Value

.009 (1 sided)

.19 (2 sided)

.19 (2 sided)

.10 (2 sided)

### ADMIRAL: Gilteritinib in FLT3-Mutant R/R AML

International, randomized, controlled phase III trial



\*Salvage chemotherapy selected prior to randomization: MEC + FLAG-IDA (high intensity) for 1-2 cycles; low-dose cytarabine + azacytidine (low intensity) administered until disease progression or intolerance.

Primary endpoints: OS, CR/CRh rate

Secondary endpoints: EFS, CR rate

Perl. NEJM. 2019;381;1728.

## Gilteritinib Prolongs OS vs Chemo in *FLT3*-Mutant R/R AML: Phase III ADMIRAL Study



Perl. ASCO 2021. Abstr 7013.

### IDH1/2-Mutant AML

- IDH1/2 mutations present in 8% to 15% of patients with AML; associated with normal cytogenetic status (cn-AML)
- IDH proteins are essential to the Krebs cycle and catalyze decarboxylation of isocitrate to  $\alpha$ -KG in cytoplasm (IDH1) and mitochondria (IDH2)
- Mutant IDH enzymes catalyze an NADPH-dependent reduction of α-KG to 2-HG
- This leads to accumulation of 2-HG oncometabolite in *IDH1/2*-mutant tumors
- Management of AML with IDH mutation
  - Selective inhibitors of mutant IDH2
    - Enasidenib
  - Selective inhibitors of mutant IDH1
    - Ivosidenib

## AG221-AML-005: Addition of Enasidenib to Azacitidine in Newly Diagnosed AML With Mutated *IDH2*

• Dose-finding (3 + 3) phase Ib study followed by randomized phase II study

Adult patients with mutant IDH2 ND AML; ineligible for intensive CT and no history of treatment with hypomethylating agents (N = 101)



Enasidenib 100 mg QD +
Azacitidine 75 mg/m²/day SC x 7 days/28-day cycle
(n = 68)

Azacitidine 75 mg/m $^2$ /day SC x 7 days/28-day cycle (n = 33)

- Primary endpoint: ORR
- Key secondary endpoints: CR rate, DoR, safety, OS, EFS

### AG221-AML-005: OS and EFS

- Median OS in enasidenib arm in patients with CR: not reached, with 1-yr OS >90%
- In azacitidine-only arm, 8 patients (24%) crossed over to enasidenib



| Endpoint, Mo | ENA + Aza<br>(n = 68) | Aza Monotherapy<br>(n = 33) | HR (95% CI)      | P Value |
|--------------|-----------------------|-----------------------------|------------------|---------|
| Median OS    | 22.0                  | 22.3                        | 0.99 (0.52-1.87) | .9686   |
| Median EFS   | 17.2                  | 10.8                        | 0.59 (0.30-1.17) | .1278   |

### Ivosidenib in IDH1-Mutated R/R AML: OS



median overall survival in the primary efficacy population was 8.8 months ivosidenib at a dose of 500 mg daily

DiNardo. NEJM. 2018;378:2386.

## Ivosidenib in *IDH1*-Mutated Newly Diagnosed AML: OS



### FLT3 or IDH Inhibitor Approvals for AML

| Drug Name               | Approval | Indications                                                                                                                 |
|-------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|
| Midostaurin + 7<br>+ 3* | 4/17     | Adult patients with newly diagnosed AML who have an FLT3 mutation                                                           |
| Enasidenib <sup>†</sup> | 8/17     | Adult patients with relapsed/refractory AML who have an <i>IDH2</i> mutation                                                |
| Ivosidenib‡             | 7/18     | Adult patients with relapsed/refractory AML who have an <i>IDH1</i> mutation                                                |
|                         | 5/19     | Newly diagnosed patients with <i>IDH1</i> -mutated AML aged 75 yr or older or with comorbidity precluding intensive therapy |
| Gilteritinib*           | 11/18    | Adult patients with relapsed/refractory AML who have an FLT3 mutation                                                       |



### **Secondary AML: A Difficult Subtype of AML**

Liposomal Cytarabine and Daunorubicin (CPX-351)



- CPX-351 a 5:1 molar ratio of cytarabine:daunorubicin
- Formulation provides synergistic leukemia cell killing in vitro
- In humans
  - CPX-351 preserved delivery of the
     5:1 drug ratio for >24 hr
  - Drug exposure maintained for 7 days
- Selective uptake of liposomes by bone marrow leukemia cells in xenograft models

## CPX-351 vs Conventional Chemotherapy in Older Patients With Newly Diagnosed t-AML or s-AML



<sup>\*</sup>Subsequent induction was recommended for patients who did not achieve a CR or CRi and was mandatory for patients achieving >50% reduction in percent blasts.

<sup>&</sup>lt;sup>†</sup>Postremission therapy with allogeneic HCT permitted either in place of or after consolidation.

### Phase III trial of CPX-351 vs 7+3 in patients aged 60-75 yr with newly diagnosed high-risk or secondary AML



FDA approval of CPX-351 as frontline therapy of secondary AML

### QUAZAR AML-001 Oral Aza in AML: Study Design

Stratified by age, prior MDS or CMML, cytogenetic risk, receipt of consolidation therapy



\*Escalated dosing schedule for oral Aza or placebo: Days 1-21.

Primary endpoint: OS

(N = 472)

### **QUAZAR AML-001: OS**



Wei. NEJM. 2020;383:2526.

### **Gemtuzumab Ozogamicin**

- Anti-CD33 antibody conjugated to calicheamicin
- Accelerated approval granted May 17, 2000, by FDA based on phase II trials
  - ORR 30% (42/142 CR + CRp) in relapsed AML
- Hepatotoxicity/hVOD
- Led to subsequent withdrawal

### **Gemtuzumab Ozogamicin Reemergence**

- ALFA-0701: ND, aged 50-70 yr<sup>1</sup>
  - 7 + 3 ± gemtuzumab
     ozogamicin (3 mg/m²)
  - Median OS improved
- MRC AML16: untreated, older<sup>2</sup>
  - LDAC ± gemtuzumab ozogamicin at 5 mg/m²
  - Improved CR rate;
     no improvement in OS
- Meta-analysis of 5 RCTs (N = 3325)<sup>3</sup>

#### Response to Gemtuzumab Ozogamicin by Cytogenetic Risk<sup>3</sup>



 No improvement in CR rate; improved OS rate in favorable-risk and intermediate-risk cytogenetics, with best response in patients with favorable risk

#### **AML Treatment Overview**



# Immunotherapeutic Principles and a Potential Paradigm Shift in the Management of AML

# T-Cell-Directed Therapy for AML: Bispecific Antibodies vs CAR T-Cells

AML antigens:

- CD123
- CD33
- NKG2D



Bispecific antibodies and CAR T-cell therapies engage the immune system

Maino. Exp Rev Hema. 2016;9:563.

### Flotetuzumab: CD123 x CD3 Bispecific Molecule

- Bivalent, bispecific (CD3 x CD123) construct coengaging T-cells with a tumor-associated antigen
- CD123: low-affinity receptor for IL-3
  - Usually present on basophils, monocytes, hematopoietic progenitor cells, plasmacytoid dendritic cells
  - Overexpressed on leukemic stem cells in hematologic malignancies, including AML
- Flotetuzumab engineered to redirect
   T-cells to kill tumor cells and recognize tumors regardless of TCR, MHC

#### **Flotetuzumab**

**Anti-CD3** 



## Flotetuzumab in PIF/ER AML: DoR and OS in Responders



The investigators concluded that flotetuzumab demonstrated encouraging activity in patients with PIF/ER6 AML with a CR/CRh/CRi rate of 31.8%,

Aldoss. ASH 2020. Abstr 331.

### Targeting Immune Checkpoints in AML

#### Inhibition of T/NK Cells by Immune Checkpoints<sup>1</sup>



### Antibodies under clinical investigation

- Nivolumab (anti–PD-1)<sup>2</sup>
- Ipilimumab (anti–CTLA-4)<sup>2</sup>
- Magrolimab (anti-CD47)<sup>3</sup>
- Sabatolimab (anti–Tim-3)<sup>4</sup>

### OS of Nivolumab + Azacitidine vs Historical HMA Regimens



**Censored for Transplant** 

- Salvage 1<sup>1</sup>
  - Median age: 72 yr
  - Secondary AML: 42%
  - Adverse cytogenetics: 35%
- Expected survival in salvage 1/2:
   5-7 mo, 12-mo OS (N = 655): 16%²
- Survival with HMA + venetoclax in salvage (off protocol): 3-4 mo<sup>3</sup>

<sup>1.</sup> Daver. EHA. 2017. Abstr S474. 2. Stahl. Blood Adv. 2018;2:293.

<sup>3.</sup> DiNardo. Am J Hematol. 2018;93:401.

### Magrolimab Induces Macrophage Phagocytosis



- Magrolimab: lgG4 anti-CD47 mAb that eliminates tumor cells via macrophage phagocytosis
- Magrolimab is being studied in various cancers with >500 patients dosed

## Magrolimab + Azacitidine in Untreated AML: Preliminary OS



 ENHANCE-2: phase III trial of magrolimab + azacitidine vs venetoclax/azacitidine or intensive CT in newly diagnosed TP53-mutant AML

Efficacy was particularly encouraging in *TP53*-mutant AML, with a 71% response rate (15 of 21), including a complete response rate of 48%, and a median overall survival of 12.9 months

