

يشميز كنكره سرائس الجنمز مريكال الكولوثر وعاقولوثر ليرائز (سال ١٤٠٠)

Haploidentical Transplantation Challenges

Babak Nejati, MD
Associated Professor of Hematology and
Oncology of Tabriz University OF medical

Sciences

blood advances

REGULAR ARTICLE

Effect of donor characteristics on haploidentical transplantation with posttransplantation cyclophosphamide

Shannon R. McCurdy, Mei-Jie Zhang, Andrew St. Martin, Monzr M. Al Malki, Asad Bashey, Sameh Gaballa, Daniel A. Keesler, Mehdi Hamadani, Maxim Norkin, Miguel-Angel Perales, Ran Reshef, Vanderson Rocha, Rizwan Romee, Mehdi Hamadani, Edmund K. Waller, Behraim J. Fuchs, Alvaro Urbano-Ispizua, Edmund K. Waller, Behraim J. Fuchs, and Mary Eapen, Alvaro Urbano-Ispizua, Mehdi Hamadani, Andrew St. Martin, Monzr M. Alvaro Urbano-Ispizua, Mei-Jie Zhang, Andrew St. Martin, Andrew St. Martin, Monzr M. Al Malki, Asad Bashey, Sameh Gaballa, Daniel A. Keesler, Alvaro Urbano-Ispizua, Mehdi Hamadani, Andrew St. Martin, Monzr M. Al Malki, Asad Bashey, Sameh Gaballa, Daniel A. Keesler, Alvaro Urbano-Ispizua, Mehdi Hamadani, Andrew St. Martin, Martin, Andrew St. Martin, Martin, Andrew St. Martin, Martin, Andrew St. Marti

¹The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD; ²Division of Biostatistics, Institute for Health and Society, and ³The Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; ⁴Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA; ⁵The Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA; ⁶Thomas Jefferson University Hospital, Inc., Philadelphia, PA; ⁷Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainsville, FL; ⁸Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; ⁹Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY; ¹⁰Churchill Hospital, Oxford, United Kingdom; ¹¹Barnes Jewish Hospital, St. Louis, MO; ¹²Hospital Clinic, University of Barcelona, Institute of Research Josep Carreras, Barcelona, Spain; and ¹³Department of Hematology and Medical Oncology, Winship Cancer Institute, Atlanta, GA

- ➤ We studied the association between donor characteristics and transplant outcomes after T-cell-replete HLA-haploidentical transplantation using PT-Cy in 928 adults with hematologic malignancy
- Sixty-five centers contributed patients,
- Eligible patients were aged 18 years and older with acute myeloid leukemia (AML), ALL, MDS, Lymphoma,...
- Excluded were regimens that included in vivo T-cell depletion (n = 29). The Institutional Review Board of the National Marrow
 - Donor Program approved this study.

- The primary endpoint was overall survival. Death from any cause was considered an event.
- Primary and secondary graft failure were considered as a single outcome.
- Relapse/progression was defined as disease recurrence(morphologic,cytogenetic, or molecular) or progression.
- Nonrelapse mortality was defined as death in remission.
- Grade II-IV acute GVHD and chronic GVHD were based on reports from each transplant center, using standard criteria.

Table 1. Donor, patient, disease and transplant characteristics

Characteristics	Number (%)
Donor age, y	
10-29	279 (30)
30-49	420 (45)
50-80	229 (25)
Donor-recipient relationship	
Parent	120 (13)
Sibling	358 (39)
Offspring	450 (48)
Donor-recipient sex match	
Male donor/male recipient	335 (36)
Male donor/female recipient	208 (23)
Female donor/male recipient	224 (24)
Female donor/female recipient	161 (17)
Donor-recipient ABO match	
Matched	530 (57)
Major mismatch	147 (16)
Minor mismatch	114 (12)
Not reported	137 (15)
Donor-recipient cytomegalovirus serostatus match	
Donor negative/recipient negative	232 (25)
Donor negative/recipient positive	234 (25)
Donor positive/recipient negative	119 (13)
Donor positive/recipient positive	335 (36)

cteristics

Number (%) 279 (30) 420 (45) 229 (25) 120 (13) 358 (39) 450 (48) 335 (36) 208 (23) 224 (24) 161 (17) 530 (57) 147 (16) 114 (12) 137 (15) 232 (25)

Table 1. (continued)

Characterist	ics
Myelodyspla	astic syndrome
Non-Hodgk	in lymphoma
Hodgkin lyn	nphoma
Disease risk	index
Low risk	
Intermediate	e risk
High risk	
Graft type*	
Bone marro	ow .
Peripheral b	blood
Conditioning	regimen
Myeloablati	ve
Total boo	dy irradiation + fludarabine
Total boo	ly irradiation + other agents
Busulfan	+ cyclophosphamide
Busulfan	+ fludarabine
Reduced in	tensity
Total boo	ly irradiation + cyclophosphamide + bine
Total boo	dy irradiation + other agents
Melphala	n + fludarabine

Table 2. Effect of patient age, donor-recipient relationship, and donor age on overall mortality, nonrelapse mortality, and relapse

	Overall mortality, hazard ratio (95% CI)*	Nonrelapse mortality, hazard ratio (95% CI)†	Relapse, hazard ratio (95% CI)‡
Patient age, y/donor-recipient relationship			
Age 18-54/parent donor	1.00, P < .0001§	1.00, P = .003§	1.00, P = .18§
Age 18-54/sibling donor	0.87 (0.61-1.24), P = .44	0.96 (0.51-1.82), P = .90	0.75 (0.52-1.09), P = .14
Age 18-54/offspring donor	0.92 (0.61-1.38), P = .67	1.47 (0.75-2.88), P = .26	0.65 (0.41-1.03), P = .07
Age 55-78/sibling donor	1.53 (1.04-2.23), P = .030	2.36 (1.26-4.45), P = .007	0.84 (0.54-1.30), P = .43
Age 55-78/offspring donor	1.57 (1.13-2.20), P = .008	1.84 (1.04-3.25), P = .04	0.96 (0.66-1.39), P = .82
Patient age/donor age, y			
Age 18-54/donor age 10-29	1.00, P < .0001§	1.00, P = .001§	1.00, $P = .28$ §
Age 18-54/donor age 30-80	1.07 (0.79-1.44), P = .64	1.12 (0.67-1.86), P = .42	1.13 (0.82-1.57), P = .44
Age 55-78/donor age 10-29	1.57 (1.09-2.26), P = .015	1.34 (0.76-2.56), P = .37	1.49 (0.99-2.24), P = .06
Age 55-78/donor age 30-80	1.82 (1.38-2.39), P < .0001	2.09 (1.32-3.34), P = .002	1.24 (0.89-1.71), P = .19

^{*}Adjusted for recipient CMV seropositivity, disease risk index, and disease.

[†]Adjusted for recipient CMV seropositivity and graft type.

[‡]Adjusted for disease risk index, disease and graft type.

[§]This P value represents the level of significance for the overall Cox regression model. P values for paired comparisons within the model were considered significant only when the P value for the overall model was significant.

Relapse

- None of the donor characteristics studied except transplantation peripheral blood was associated with relapse or Nonrelapse.
- Syndrome (HR, 0.64; 95% CI, 0.45-0.91; P 5 .01) and Hodgkin lymphoma (HR, 0.49; 95% CI, 0.28-0.87; P 5 .015), but not not Hodgkin lymphoma (HR, 0.83; 95% CI, 0.58-1.19; P 5 .30) or A
- Compared with low disease risk index, risks were higher with intermediate (HR, 2.44; 95% CI, 1.34-4.45; P 5 .004) and high

Overall Survival

Non Relapse Mortality

Graft Failure

Discussion

- patient and disease characteristics are more important than either the age of the donor or donor-recipient relationship with regard to survival and GVHD.
- In adults, transplantation of grafts from a parent was associated with higher graft failure rate.
- The higher risks for acute and chronic GVHD and the absence of a survival advantage with peripheral blood suggest that with the PT-Cy approach for haplo transplantation.

- There is broad agreement that presence of donor-specific antibodies in the recipient is associated with graft failure.
 - best studied at individual centers to establish center-specific thresholds for desensitization.
- Other donor characteristics such as sex, parity, age and blood group ABO match were not associated with transplant outcomes
- ➤ However, an EBMT report that acute GVHD risks were higher with bidirectional ABO mismatching only.

Biology of Blood and Marrow Transplantation

journal homepage: www.bbmt.org

Selecting the Best Donor for Haploidentical Transplant: Impact of HLA, Killer Cell Immunoglobulin-Like Receptor Genotyping,

Scott R. Solomon ^{1,*}, Michael T. Aubrey ², Xu Zhang ³, Allison Piluso ², Brian M. Freed ², Stacey Brown ¹, Katelin C. Jackson ¹, Lawrence E. Morris ¹, H. Kent Holland ¹, Melhem M. Solh ¹, Asad Bashey ¹

The Blood and Marrow Transplant Program at Northside Hospital, Atlanta, Georgia Clinimmune Labs, Aurora, Colorado School of Public Health, University of Texas, Houston, Texas

and Other Clinical Variables

- HLA and KIR Genotypes

 > Other than HLA and KIR genotypic variation, other donor characteristics associated with improved survival in the current study were donor CMV seropositivity and donorrecipient relationship (child > sibling > parent).
- > CMV-seropositive transplant recipients continue to show a significantly higher risk of mortality, Our study indeed showed inferior survival of CMV-seropositive recipients transplanted with seronegative donors.

> CMV-seropositive donors are generally preferred for CMV-seropositive recipients because of a lower risk of CMV reactivation, CMV disease, and NRM

➤ In the setting of ATG-based T cell—replete haplo HSCT (Beijing protocol), only maternal, but not paternal, donors were associated with higher NRM and inferior survival

DISCUSSION

- > To date, there are no published reports of HLA disparity affecting transplant outcomes in T cell—replete haplo HSCT
- ➤ In our study specific class II HLA mismatches in HLA-DRB1 and HLA-DPB1 (nonpermissive mismatch) were associated with superior OS.
- ➤ The presence of HLA-DR allelic mismatch has shown a similar protective effect of HLA-DR disparity on survival, that effect was mostly due to relapse protection.
- > There was no association of HLA disparity with acute GVHD

Donor KIR genotype

 \triangleright Donor KIR R-L mismatch was significantly associated with improvements in OS (HR, .63; P = .050) and DFS (HR, .57;P = .012).

- ➤ In addition, KIR B/x with 2DS2 (KIR B/x haplotype with presence of KIR2DS2) was associated with superior OS (HR, .43; P = .005) and DFS (HR, .45; P = .003) when compared with donors with KIR A/A haplotype.
- Furthermore, OS and DFS were also improved when compared with KIR B/x haplotype donors without KIR2DS2.
- ➤ The biological explanation is unknown but NK-mediated alloreactivity has been previously proposed to induce enhanced efficacy and GVHD protection in the context of T cell-depleted Haplo-SCT

ARTICLE

Second haploidentical stem cell transplantation for primary graft failure

Received: 6 July 2020 / Revised: 11 November 2020 / Accepted: 30 November 2020

© The Author(s), under exclusive licence to Springer Nature Limited 2020

- ➤ The aim of the present study was to assess the incidence of PrGF in a series of 503 unmanipulated bone marrow HAPLO transplants, and to report the outcome of a second HAPLO transplant in 19 patients in whom PrGF occurred.
- ➤ The overall risk of PrGf is relatively low, possibly because the vast majority of patients are prepared with a myeloblative conditioning regimen.
- > PrGF was defined as the lack of neutrophil recovery by day +28, with donor chimerism <10%.
- ➤ Indeed we recorded only PrGF (1.4%) and a stepwise increased risk with TBF3 (2.9%), TBF2 (5.3%), TBF1 or 1 day of busulfan (12.5%) on patients.
- ➤ All 19 patients had autologous chimerism on the first bone marrow aspirate (days +20, +30), with <10% donor chimerism; one patient had 15% on first examination and 0% on second evaluation.

of 19 patients at first HAPLO BMT.

Table 1 Clinical charactersitics

N	RG	RA	Dx	Phase	DSA	DG	DA	Rel.	SC	Cell dose	CD34
1	M	60	MDS	ADV	POS	M	27	SON	ВМ	2.2	2.4
2	F	56	MDS	ADV	POS	M	33	SON	BM	4.8	9.6
3	F	64	MDS	ADV	NEG	M	33	SON	BM	3.1	3.7
4	F	65	AML	CR1	POS	M	35	SON	BM	3.1	4.1
5	M	30	AML	CR1	NEG	F	50	MOTH	BM	2.0	0.7
6	F	54	MF	ADV	POS	M	25	SON	BM	4.3	5.3
7	M	65	MF	ADV	NA	M	37	SON	BM	2.9	3.5
8	F	67	MF	ADV	NA	F	31	DAUG	BM	2.4	1.8
9	M	63	AML	ADV	NEG	F	59	SIB	BM	2.4	1.3
10	F	20	AML	CR1	NEG	F	39	MOTH	BM	5.6	5.1
11	F	40	AML	CR2	POS	F	20	DAUG	BM	4.0	5.6
12	F	50	AML	CR1	POS	M	20	SON	BM	5.1	6.5
13	F	37	AML	CR1	NA	F	57	MOTH	BM	1.8	1.2
14	F	35	AML	CR1	NA	F	62	MOTH	BM	1.4	1.3
15	M	60	AML	CR1	NEG	F	33	DAUG	BM	3.6	4.4
16	F	45	AML	CR1	POS	F	46	SISTE	BM	3.8	1.0
17	M	58	MF	ADV	NEG	M	50	BROTH	BM	5.3	3.2
18	F	65	AML	CR1	POS	M	38	SON	BM	5.6	3.7
19	M	69	AML	FL	NEG	M	39	SON	BM	3.1	4.2

RG recipinets' gender, DG donors' gender, MDS myelodisplastic syndrome, AML acute myeloid leukemia,

MF myelofibrosis, CD complete remission, F female, M male, BM bone marrow, MOTH mother, DAUG

Conditioning regimens

- \triangleright (1) fludarabine 120 mg/m2 combined with TBI: 9–12 Gy (n = 74)
- \triangleright (2) thiotepa 5 mg/kg on days -6 and -5 (total dose 10 mg/kg), busulfan 3.2 mg/kg, q24 h, on days -4, -3, -2 (total dose 9.6 mg/kg) and fludarabine 50 mg/m2 on days -4, -3, -2 (total dose 150 mg/m2), (n = 213).
- ➤ Busulfan was administered only on days -4, -3 (total dose 6.4 mg/kg), which we refer to as TBF2 (208 patients); or only on day -4, which we refer to as TBF1 (total dose 3.2 mg/kg) (n = 8).
- ➤ All patients received CsA starting day 0, at the dose of 3 mg/kg, until day +20 intravenously, then orally until day +180; MMF 15 mg/kg b.i.d. for 28 days and cyclophosphamide 50 mg/kg days +3 and +5

Second transplantation

- > A second transplant was performed at a median interval of 42 days (range 34–82)
- ➤ The conditioning regimen for the second graft was the Baltimore protocol :CTX 14.5 mg/kg days -5, -6; fludarabine 30 mg/m2 days -6, -2; TBI 2 Gy day -1. Six patients received melphalan 30 mg/m2 instead of TBI 2 Gy.
- > All donors were mobilized with G-CSF and unmanipulated PB cells were infused.
- ➤ GvHD prophylaxis was again PTCY 50 mg/kg days +3, +4, followed by CsA and MMF,The median CD34+ cell dose infused was 4.7 × 106/k
- > DSA are possibly the strongest risk factor for graft failure after HAPLO transplants

N	Donor 2nd Tx	Cond	Int-dd 1st-2nd	Engr 2nd Y/N	Int-dd 2nd-3rd	Donor 3rd Tx	Engr 3rd Y/N	aGvHD grade	Alive 1 year Y/N	Cause death <1 year	Time from 1st To
1	Same	TBI	42	Y	_	_	_	0	Y	_	
2	Other	TBI	41	Y	_	_	_	0	Y	_	
3	Other	TBI	82	Y	_	_	_	0	N	Infection	d 110
4	Same	TBI	37	Y	_	_	_	I	Y	_	
5	Other	TBI	49	Y	_	_	_	I	Y	_	
6	Other	TBI	41	Y	_	_	_	0	Y	_	
7	Same	TBI	41	No	_	_	-	N	108	Graft failure	
8	Same	TBI	44	Y	_	_	_	0	Y	_	
9	Same	TBI	66	Y	_	_	_	п	N	Relapse	d 168
10	Same	TBI	50	Y	_	_	_	0	Y	_	
11	Other	TBI	44	Y	_	_	_	П	Y	_	
12	Same	TBI	49	No	_	_	_	0	N	Infection	d 172
13	Same	MEL	36	No	_	_	-	0	N	Graft failure	d 3
14	Same	MEL	34	Y	_	_	_	0	Y	_	
15	Same	MEL	39	No	49	UD	Y	0	Y	_	
16	Same	MEL	38	Y	_	_	_	0	Y	_	
17	Same	TBI	42	Y	_	_	_	п	Y		
18	Same	MEL	41	Y	_	_	_	ш	N	Gvhd	d 100
19	Other	MEL	53	No	48	UD	Y	П	Y	_	

Table 2 Clinical data of 19 patients at second HAPLO.

Fig. 1 1-years OS in patients with PrGF. Actuarial 1-year survival of patients who experienced primary graft failure (PrGF) (n = 19) or patients who engrafted and were alive on day +28 (n = 484).

conclusion

- ➤ Given that GvHD prophylaxis was exactly the same for all 503 patients, this would suggest a role of the intensity of the preparative regimen.
- There was no influence of patient's age on engraftment and ABO mismatch has been reported to influence the rate of engraftment
- ➤ patients experiencing primary failure to engraft after an unmanipulated marrow HAPLO graft can be rescued with an early second HAPLO transplant, using the same or another HAPLO donor, NOT a modified Baltimore regimen
- ➤ The overall risk of PrGf in our series is relatively low, possibly because the vast majority of patients are prepared with a myeloblative conditioning regimen,

RESEARCH Open Access

Post-transplant cyclophosphamide after matched sibling, unrelated and haploidentical donor transplants in patients with acute myeloid leukemia: a comparative study of the ALWP EBMT

Jaime Sanz^{1,2*}, Jacques-Emmanuel Galimard³, Myriam Labopin^{3,4}, Boris Afanasyev⁵, Emanuele Angelucci⁶, Fabio Ciceri⁷, Didier Blaise⁸, Jan J. Cornelissen⁹, Ellen Meijer¹⁰, J. L. Diez-Martin¹¹, Yener Koc¹², Montserrat Rovira^{13,14}, Luca Castagna¹⁵, Bipin Savani¹⁶, Annalisa Ruggeri¹⁷, Arnon Nagler^{18,19}, Mohamad Mohty⁴ and Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT)

Male	693 (56)	117 (54)	132 (56)	444 (56)	
Female	546 (44)	98 (46)	103 (44)	345 (44)	
srnofsky performance status, n (%)					0.2
≥ 90	929 (79)	159 (77)	192 (83)	578 (78)	
< 90	251 (21)	48 (23)	39 (17)	164 (22)	
Missing	59	.8	4	47	
ytogenetic risk category, n (%)					0.2
Standard	47 (6)	10 (8)	8 (6)	29 (5)	
Intermediate	543 (66)	92 (70)	87 (60)	364 (66)	
High	239 (29)	29 (22)	49 (34)	161 (29)	
Missing	410	84	91	235	
rpe of AML, n (%)					< 0.001
De novo	1046 (84)	188 (87)	216 (92)	642 (81)	
Secondary	193 (16)	27 (13)	19 (8)	147 (19)	
onths from diagnosis to transplant, median (range)	5 (1-18)	4 (1-18)	5 (2-18)	5 (1-18)	< 0.001
anditioning intensity, n (%)					0.03
Myeloablative	725 (59)	122 (58)	116 (50)	487 (62)	
Reduced intensity	500 (41)	87 (42)	115 (50)	298 (38)	
Missing	14	6	4	4	
pe of conditioning, n (%)					0.2
Based on chemotherapy	950 (77)	159 (75)	172 (75)	619 (78)	
Based on TBI	287 (23)	54 (25)	63 (25)	170 (22)	
Missing	2	2	0	0	
em cell source, n (%)					< 0.001
Bone marrow	425 (34)	62 (29)	22 (9)	341 (43)	
Mobilized peripheral blood	814 (66)	152 (71)	213 (91)	448 (57)	
vivo T cell depletion, n (%)	164 (13)	29 (13)	63 (27)	72 (9)	< 0.001
vHD prophylaxis, n (%)					< 0.001
PTCy + 2 drugs	897 (72)	56 (26)	111 (47)	730 (93)	
PTCy + 1 drug	265 (21)	108 (50)	111 (47)	46 (6)	

g. 1 Cumulative incidence of relapse according to the type of transplant

Non Relapse Mortality

Cumulative incidence of non-relapse mortality according to the type of transplant

Leukaemia Free Survival

Fig. 3 Probability of leukemia-free survival according to the type of transplant

25 % %0 0.0 0.5 1.0 MSD: 215 MUD: Haplo: 789

Overall Survival

Fig. 4 Probability of overall survival according to the type of transplant

Conclusion

- Moreover, the group's previous study showed higher expression of CI on NK cells in haplo-HSCT-treated patients
- ➤ Haplo-SCT had higher rates of aGVHD and NRM, but lower relapse incidence.
- ALWP-EBMT has recently reported that the addition of IS drugs to Prenhances its effect and reduces the risk of severe chronic GvHD, reducing mortality and improving survival
- In multivariable analysis variables associated with better LFS were M good- or intermediate-risk cytogenetics and good performance status where positive CMV serostatus of the recipient showed worse outcome.

- ► Under similar GvHD prophylaxis, a greater HLA disparity in the Haplo compared with the MSD and MUD settings could explain a higher NRM
 - Although the negative impact of Haplo in NRM was partially counterbalanced with a decreased incidence of relapse that translated in similar LFS
- **EBMT** also showed decreased relapse incidence in patients with high-risk cytogenetics undergoing Haplo.
- > GRFS was 46% for Haplo, 42% for MUD, and 45% for MSD.

