به نام آنکه تن را نور جان داد خرد را سوی دانایی عنان داد

The Sequencing of treatment in metastatic gastric cancr

Dr. Zahra Mozaheb

Hematologist-Medical Oncologist Mashhad University of Medical Science

Introduction

- Gastric cancer is not a top-10 malignancy in the United States but represents one of the most common causes of cancer death worldwide.
- Biological differences between tumors from Eastern and Western countries add to the complexity of identifying standard-of-care therapy based on international trials.
- Gastric cancers from Eastern countries, such as Japan and Korea, have lower proportions with signet ring histology and proximal stomach involvement.
- Because of the lower proportion of cases with these adverse factors, most large, randomized trials from the East demonstrate survival rates that are 30% to 40% higher than trials from the West.

NCCN Guidelines Version 1.2022 Gastric Cancer

NCCN Guidelines Index
Table of Contents
Discussion

PERFORMANCE STATUS

PALLIATIVE MANAGEMENT

Treatment of Metastatic and Unresectable Gastric Cancer

- Several cytotoxic agents are active in advanced gastric cancer, including fluoropyrimidines, platinums, taxanes, and irinotecan
- The choice of treatment depends on patient
- performance status
- medical comorbidities
- toxicity profile of the regimen.
- Combination regimens offer higher response rates and improved survival compared with single-agent therapy.
- There is no universal standard first-line therapy,
- A fluoropyrimidine and platinum doublet is typically the preferred backbone regimen for most patients.

- Oxaliplatin is the choice platinum in most modern regimens
- A meta-analysis REAL-2 trial and other randomized trial phase II compared Oxaliplatin-based and cicplatin-based regimens and showed that Oxaliplatin was associated with significant improvement in PFS and OS and less cytopenia and alopecia, but more neurotoxicity and diarrhea

- In very fit patients a triplet regimen combining a fluoropyrimidine, oxaliplatin, and docetaxel can be considered.
- There is no role for <u>epirubicin</u> in contemporary regimens for advanced disease
- Single-agent therapy with a fluoropyrimidine, irinotecan, or taxane can be considered in patients who are not candidates for intensive therapy

- In patients with overexpression or amplification of HER2 trastuzumab should be added to cytotoxic first-line chemotherapy
- In patients with a PD-L1 combined positive score (CPS) ≥5, nivolumab should be added to first-line chemotherapy

- In the second-line treatment for metastatic gastric cancer, cytotoxic chemotherapy agents not already used in the first line can be attempted
- In fit patients, paclitaxel plus ramucirumab is a preferred second-line regimen after progression on a fluoropyrimidine and platinum doublet
- Otherwise, single-agent cytotoxic chemotherapy or ramucirumab monotherapy can be considered

RAINBOW trial

randomized patients who had progressed on first-line chemotherapy

Figure 2: Kaplan-Meier curves of overall survival (A) and progression-free survival (B) HR=hazard ratio.

Figure 2: Overall survival in the intention-to-treat population

- The oral cytotoxic agent trifluridine-tipiracil, combining an antimetabolite trifluridine with a thymidine phosphorylase inhibitor (tipiracil), has been shown in the phase 3 setting to have a survival benefit over placebo (5.7 vs 3.6 months)
- In heavily treated and refractory gastric cancer and is now an approved third-line regimen.

Immunotherapy in Gastric Cancer

- In the last decade, immune checkpoint blockade has emerged as an exciting treatment strategy across a spectrum of malignancies.
- This includes monoclonal antibodies that inhibit programmed cell death protein 1 (PD– 1), PD–L1, and cytotoxic T-lymphocyte antigen 4 (CTLA–4).

Gastric adenocarcinomas and categorized gastric cancer into 4 subtypes

Mismatch repair (MMR)

- Mismatch repair (MMR) genes are responsible for fixing errors that occur during DNA replication.
- Tumors with defects in the MMR (dMMR)harbor significantly more mutations than tumors with intact MMR machinery (MMR-proficient).
- Across tumor types, patients with dMMR/high levels of MSI cancers are more likely to respond to PD-1 blockade than those with MMR-proficient cancers.
- this is because of high levels of neoantigens and PD-L1-positive T-cell infiltration in dMMR tumors.

 Table 1. Pivotal clinical trials of anti-PD-1/PD-L1 therapies for gastric cancer

Target	Phase	Trial	Line	Agents (experimental)	Control
PD-1	III	ATTRACTION-2 (NCT02267343)	3rd or later	Nivolumab	РВО
PD-1	II	KEYNOTE-059 (NCT02335411)	3rd or later	Pembrolizumab	-
PD-L1	III	JAVELIN300 (NCT02625623)	3rd	Avelumab	Irinotecan/taxanes/BSC
PD-1	III	KEYNOTE-061 (NCT02370498)	2nd	Pembrolizumab	Paclitaxel
PD-1	III	KEYNOTE-063 (NCT03019588)	2nd	Pembrolizumab	Paclitaxel
PD-1	III	KEYNOTE-062 (NCT02494583)	1st	Pembrolizumab or Pembrolizumab+CTx	XP/FP
PD-L1	III	JAVELIN100 (NCT02625610)	1st mainte- nance	Avelumab	CapeOX/FOLFOX
PD- 1/CTLA-4	III	CheckMate-649 (NCT02872116)	1st	+Nivolumab Ipilimumab+Nivo	CapeOX/FOLFOX
PD-1	III	ATTRACTION-4 (NCT02746796)	1st	+Nivolumab	SOX/CapeOX
PD-1	III	KEYNOTE-811 (NCT03615326)	1st	+Pembrolizumab	FP/CapeOX/SOX +Tmab
PD-1	III	KEYNOTE-859 (NCT03675737)	1st	+Pembrolizumab	FP/CapeOX
PD-1/Lag-3	II/III	MAHOGANY (NCT4082364)	1st	margetuximab INCMGA00012	CapeOX/FOLFOX +Tmab
PD-1	III	KEYNOTE-585 (NCT03221426)	Neoadjuvant	+Pembrolizumab	XP/FP/FLOT
PD-1	III	ATTRACTION-5 (NCT03006705)	Adjuvant	+Nivolumab	S-1/CapeOX
PD-1	III	CheckMate-577 (NCT02743494)	Adjuvant	Nivolumab	РВО

Agents (experimental)	Control	Primary Endpoint	Result	Difference mOS (m
Nivolumab	PBO	OS	Positive	+1.2 (HR 0.63)
Pembrolizumab	-	ORR	Positive	-
Avelumab	Irinotecan/taxanes/BSC	OS	Negative	-0.4 (HR 1.1)
Pembrolizumab	Paclitaxel	OS/PFS	Negative	+0.8 (HR 0.82)
Pembrolizumab	Paclitaxel	OS	Terminated	-
Pembrolizumab or Pembrolizumab+CTx	XP/FP	OS/PFS	Negative	-0.5 (HR 0.91) +1.4 (HR 0.85)
Avelumab	CapeOX/FOLFOX	OS	Negative	-0.5 (HR 0.91)
+Nivolumab Ipilimumab+Nivo	CapeOX/FOLFOX	OS/PFS	positive	+3.3 (HR 0.71) for CPS≥5 patients
+Nivolumab	SOX/CapeOX	OS/PFS	positive for PFS/nega- tive for OS	+0.3 (HR 0.9)
+Pembrolizumab	FP/CapeOX/SOX +Tmab	OS/PFS	Ongoing	-
+Pembrolizumab	FP/CapeOX	OS/PFS	Ongoing	-
margetuximab INCMGA00012	CapeOX/FOLFOX +Tmab	OS	Ongoing	-
+Pembrolizumab	XP/FP/FLOT	OS/EFS/pCR	Ongoing	-
+Nivolumab	S-1/CapeOX	RFS	Ongoing	-
Nivolumab	РВО	DFS	Ongoing	-

- KEYNOTE-158 was a phase 2 trial that enrolled patients with treatment-refractory, noncolorectal MSI-H/dMMR cancers to receive pembrolizumab
- Of the 24 patients with gastric cancer, there were 11 responses (including 4 complete responses), and the median PFS was 11 months.
- This trial ultimately led to the tissue-agnostic US FDA approval of pembrolizumab for patients with unresectable or metastatic MSI-H or dMMR tumors of any solid tumor type, including gastric cancer, who progressed after prior treatment and have no satisfactory alternative treatmen

KEYNOTE-059: Study Design

Open-label, multicohort phase II study

Cohort 1 Pembrolizumab Pts with recurrent or ≥ 2 prior 200 mg Q3W Tx continued for metastatic gastric or lines of CT 24 mos or until PD, GEJ adenocarcinoma: intolerable toxicity. ECOG PS 0/1; Pembrolizumab 200 mg Q3W + Cohort 2 or withdrawal of HER2/neu negative*: Cisplatin 80 mg/m² Q3W + No prior tx consent; survival no prior PD-1/PD-L1 5-FU 800 mg/m² Q3W or follow-up until study Capecitabine 1000 mg/m² BID Q3W tx, systemic steroids. end, death, or autoimmune disease, withdrawal Cohort 3 ascites, or CNS mets Pembrolizumab No prior tx, (N = 259)200 mg Q3W PD-L1+

*HER2/neu positive allowed in cohort 1 if prior trastuzumab administered.

- Primary endpoints: ORR, safety; secondary endpoints: DoR, PFS, OS
- Exploratory biomarker endpoints: efficacy by MSI, GEP

Fuchs CS, et al. ASCO 2017, Abstract 4003.

Slide credit: clinicaloptions.com

▶ KEYNOTE-059

- Overall, the ORR was 11.6%, and the median duration of response (DoR) was 8.4 months.
- However, in PD-L1-positive (CPS ≥ 1) patients, the ORR was 15.5%, and the median DoR was 16.3 months
- These results were the basis of the FDA approval of pembrolizumab for third-line treatment of PD-L1- positive (CPS ≥1) gastric adenocarcinoma.

Study design of ATTRACTION-02

- Patients were permitted to continue treatment beyond initial RECIST v1.1—defined disease progression, as assessed by the investigator, if receiving clinical benefit and tolerating study drug
- Retrospective determination of tumor PD-L1 expression, defined as positive if staining in ≥1% (or ≥5%) of tumor cells, was
 performed in a central laboratory using immunohistochemistry (28-8 pharmDx assay) for patients with available tumor samples

ATTRACTION-02

Nivolumab is now approved in Japan for advanced gastric cancer refractory to conventional chemotherapy, regardless of PD-L1 expression

ATTRACTION-02

Overall survival by PD-L1 expression <1% vs ≥1%

CheckMate 649 study design

CheckMate 649 is a randomized, open-label, phase 3 study^a

At data cutoff (May 27, 2020), the minimum follow-up was 12.1 monthsh

CheckMate-649

- In initial results, patients with PD-L1 CPS ≥5 receiving nivolumab plus chemotherapy compared with chemotherapy alone had improved OS (14.4 vs 11.1 months) at a prespecified interim analysis and improved PFS (7.7 vs 6.1 months) at final analysis
- This is a practice-changing study that establishes chemotherapy plus nivolumab as a new <u>standard</u> of care for <u>first-line treatment of HER2-negative</u> gastric cancer in patients with PD-L1 CPS ≥5.
- On April 16, 2021, the FDA approved nivolumab in combination with fluoropyrimidine— and platinum—containing chemotherapy for advanced or metastatic gastric cancer, gastroesophageal junction cancer, and esophageal adenocarcinoma

Tumor Mutation Burden

- ▶ **TMB** is another biomarker currently under investigation.
- TMB quantifies the number of somatic mutations per coding area of a genome.
- It has been hypothesized that a heavily mutated tumor can produce a large number of neoantigens, resulting in T-cell infiltration and potentially increased responsiveness to checkpoint blockade.

- In June 2020, the FDA granted accelerated approval for the treatment of patients with unresectable or metastatic TMB-high
- TMB-H (≥10 mutations per megabase) solid tumors that progressed after prior treatment and had no satisfactory alternative treatment options.
- this was based upon a prospectively planned retrospective analysis of previously treated patients with advanced solid tumors and TMB-H enrolled on KEYNOTE-158
- tissue TMB (tTMB) could be a novel and useful predictive biomarker for response to pembrolizumab monotherapy in patients with previously treated recurrent or metastatic advanced solid tumours.

Epstein-Barr Virus

- EBV is a human herpes virus implicated in several malignancies, including gastric adenocarcinoma.
- ▶ EBV-positive gastric cancer is a distinct subset of gastric cancer identified by TCGA and is associated with a rich CD8-positive
- T-cell infiltrate and increased PD-L1 and PD-L2 expression, which may potentially make it more susceptible to PD-1 blockade.
- Several reports have described robust responses of EBV-positive tumors to immune checkpoint blockade; however, this needs to be prospectively studied

HER2-Positive Gastric Cancer

- Approximately 15% to 20% of advanced gastric and gastroesophageal junction adenocarcinomas have overexpression or amplification of HER2.
- HER2 positivity is more commonly seen in:
- intestinal-type cancers compared with diffusetype or mixed-type cancers,
- in the TCGA CIN subtype,
- and in cancers arising from the gastroesophageal junction
- The pivotal phase 3 ToGA trial established the addition of trastuzumab to chemotherapy as the standard of care in the first-line treatment of advanced HER2-positive gastric adenocarcinoma

- Lapatinib, a tyrosine kinase inhibitor affecting both HER2 and EGFR, does not improve survival when combined with chemotherapy in both first-line and second-line settings in metastatic HER2-positive gastric adenocarcinoma
- Trastuzumab emtansine, an antibody-drug conjugate of trastuzumab bound to the tubulin inhibitor emtansine, does not prolong OS in the second-line treatment of HER2-positive patients.
- Pertuzumab, a humanized monoclonal antibody that binds to a different epitope on the HER2 receptor, in addition to trastuzumab and chemotherapy, also failed to show a survival benefit in the first-line JACOB trial

- Finally, trastuzumab beyond progression has not been shown to improve survival. In patients who progressed on first-line trastuzumab plus chemotherapy, trastuzumab plus paclitaxel did not improve PFS compared with paclitaxel alone
- Exploratory analysis revealed that HER2 positivity was lost after first-line chemotherapy in 11 of 16 evaluable patients.
- Given the potential for loss of HER2 expression over time, second-line trials targeting HER2 should require re-demonstration of HER2 positivity

Novel HER2-targeted agents

- ZW25 has been shown to be well tolerated with singleagent activity in a heavily pretreated group of HER2positive malignancies.
- Margetuximab has also demonstrated tolerability and antitumor activity in HER2-positive cancers.
- Most promising at this point in time is trastuzumab deruxtecan, a humanized monoclonal anti-HER2 antibody attached to a cytotoxic topoisomerase I inhibitor through a cleavable linker.
- DESTINY-Gastric01 was a randomized phase 2 trial that evaluated trastuzumab deruxtecan versus chemotherapy in a refractory population of patients with HER2-positive gastric and gastroesophageal adenocarcinoma who had progressed on ≥2 prior therapies, including trastuzumab.
- Trastuzumab deruxtecan showed improvements in
- OS (12.5 vs 8.4 months) and
 - RR (51% vs 14%) compared with chemotherapy

HER2-directed therapy plus immunotherapy

KEYNOTE-811: Pembrolizumab + Trastuzumab + CT for HER2+ Advanced Gastroesophageal Cancer

Randomized, double-blind, placebo-controlled phase III study

Stratified by geographic region, PD-L1 CPS, chemotherapy choice

Patients with HER2+ advanced gastric or GEJ adenocarcinoma, no prior therapy in advanced setting (N = 692) Pembrolizumab 200 mg IV Q3W +
Trastuzumab 6 mg/kg IV Q3W +
FP or CAPOX*

Placebo IV Q3W +
Trastuzumab 6 mg/kg IV Q3W +
FP or CAPOX*

Up to 35 cycles or until disease progression, unacceptable toxicity, or study withdrawal

*Trastuzumab 8 mg/kg loading dose.

FP: 5-fluorouracil 800 mg/m² IV Days 1-5 Q3W + cisplatin 80 mg/m² IV Q3W CAPOX: capecitabine 1000 mg/m² BID Days 1-14 Q3W + oxaliplatin 130 mg/m² IV Q3W

- Efficacy analysis: first 264 patients enrolled; safety analysis: 433 patients who received ≥1 dose of study medication
- Primary endpoints: OS, PFS per RECIST v1.1 by BICR
- Secondary endpoints: ORR and DoR per RECIST v1.1 by BICR, safety

Janjigian ASCO 2021. Abstr 4013.

Slide credit: clinicaloptions.com

adding pembrolizumab to trastuzumab and chemotherapy markedly reduces tumour size, induces complete responses in some participants, and significantly improves objective response rate

HER2-directed therapy plus immunotherapy,

- A phase 2 trial demonstrated that pembrolizumab could be safely combined with trastuzumab plus chemotherapy in HER2-positive, metastatic gastroesophageal adenocarcinoma.
- 91% RR and a median OS of 27.3 months, which were much higher than what was seen with chemotherapy plus trastuzumab (RR, 47%),
- suggesting that there may be a synergistic benefit of combining checkpoint blockade with standard trastuzumab plus chemotherapy.
- The results of triplet treatment of chemotherapy, trastuzumab and pembrolizumab in first-line advanced gastric cancer in the PANTERA study were also presented at ASCO-GI 2021

Antiangiogenic Therapy

- Ramucirumab, a monoclonal antibody against VEGFR-2, has a proven survival benefit in the second-line treatment of gastric cancer, both as monotherapy and in combination with paclitaxel.
- Lenvatinib has been safely combined with pembrolizumab, with a 69% RR in the first-line and second-line treatment of advanced gastric cancer.
- The addition of regorafenib to nivolumab has also been shown to be safe, with encouraging antitumor activity in the phase 1 setting.
- We look forward to exploring the efficacy of combined VEGF inhibition and PD-1 blockade in larger cohorts of patients.

Investigational Biomarkers and Future Therapies

- Targeting EGFR is a therapeutic strategy in development in gastric cancer
- Although EGFR inhibitors are active in several cancers, these drugs have not shown efficacy in the phase 3 setting in unselected patients.
- Claudin 18.2, a protein expressed by a subset of gastric cancers, is a novel target for drug development.
- Zolbetuximab, a chimeric monoclonal antibody that binds to Claudin 18.2, is tolerable, with antitumor activity both as monotherapy and in combination with chemotherapy in patients with Claudin 18.2-positive gastroesophageal adenocarcinoma, and is being further investigated in the phase 3 setting
- PET using novel tracers, such as radiolabeled trastuzumab, may help assess and monitor tumor heterogeneity over time and is an area of active investigation.

FIGHT trial

bemarituzumab plus mFOLFOX6 versus placebo plus mFOLFOX6.

From: Highlights from ASCO-GI 2021 from EORTC Gastrointestinal tract cancer group

bemarituzumab +chemotherapy: Improve OS in patients with FGFR2b-positive, HER2-negative **frontline advanced gastric** or GEJ.

The results of the phase 2 FIGHT trial were presented during a presentation at the 2021 ASCO Annual Meeting.

NCCN Guidelines Version 1.2022 Gastric Cancer

PRINCIPLES OF SYSTEMIC THERAPY

Systemic Therapy for Unresectable Locally Advanced, Recurrent or Metastatic Disease (where local therapy is not indicated)

First-Line Therapy

Oxaliplatin is generally preferred over cisplatin due to lower toxicity.

Preferred Regimens

- HER2 overexpression positive adenocarcinomaf
- Fluoropyrimidine (fluorouracilb or capecitabine) and oxaliplatin and trastuzumaba
- Fluoropyrimidine (fluorouracil^b or capecitabine) and cisplatin and trastuzumab (category 1)^{a,11}
- HER2 overexpression negative^f
- ▶ Fluoropyrimidine (fluorouracil^b or capecitabine), oxaliplatin, and nivolumab (PD-L1 CPS ≥5) (category 1)^{g,h,12}
- Fluoropyrimidine (fluorouracil^b or capecitabine) and oxaliplatin ¹³⁻¹⁵
 Fluoropyrimidine (fluorouracil^b or capecitabine) and cisplatin ^{13,16-18}

Other Recommended Regimens

- HER2 overexpression positive adenocarcinomaf
- Fluoropyrimidine (fluorouracil^b or capecitabine) and cisplatin and trastuzumab^a and pembrolizumab^{g,h,19}
- Fluoropyrimidine (fluorouracil^b or capecitabine) and oxaliplatin and trastuzumab^a and pembrolizumab^{g,h,19}
 Fluorouracil^{b,i} and irinotecan^{j,20}
- Paclitaxel with or without cisplatin or carboplatin j,21-25
- Docetaxel with or without cisplatin^{j,26-29}
 Fluoropyrimidine^{j,17,30,31} (fluorouracil^b or capecitabine)
- Docetaxel, cisplatin or oxaliplatin, and fluorouracil^{b,j,32,33}
- Docetaxel, carboplatin, and fluorouracil (category 2B)^{j,34}

Useful in Certain Circumstances

- HER2 overexpression negative[†]
- Fluoropyrimidine (fluorouracil^b or capecitabine), oxaliplatin, and nivolumab (PD-L1 CPS <5) (category 2B)^{g,h,12}

NCCN Guidelines Version 1.2022 Gastric Cancer

PRINCIPLES OF SYSTEMIC THERAPY

Systemic Therapy for Unresectable Locally Advanced, Recurrent or Metastatic Disease (where local therapy is not indicated)

Second-Line or Subsequent Therapy

Dependent on prior therapy and PS

Preferred Regimens

- Ramucirumab and paclitaxel (category 1)³⁵
- Fam-trastuzumab deruxtecan-nxki for HER2 overexpression positive adenocarcinoma³⁶
- Docetaxel (category 1)^{28,29}

- Paclitaxel (category 1)^{24,25,37}
 Irinotecan (category 1)³⁷⁻⁴⁰
 Fluorouracil^{b,i} and irinotecan^{38,41,42}
- Trifluridine and tipiracil for third-line or subsequent therapy (category 1)⁴³

Other Recommended Regimens

- Ramucirumab (category 1)⁴⁴
- Irinotecan and cisplatin^{14,45}
- Fluorouracil and irinotecan + ramucirumab^{b,i,46}
- Irinotecan and ramucirumab⁴⁷
- Docetaxel and irinotecan (category 2B)⁴⁸

Useful in Certain Circumstances

- Entrectinib or larotrectinib for NTRK gene fusion-positive tumors^{49,50}
 Pembrolizumab^{g,h} for MSI-H or dMMR tumors⁵¹⁻⁵³
- Pembrolizumab^{g,h} for TMB high (≥10 mutations/megabase) tumors⁵⁴
- Dostarlimab-gxly^{g,h,k} for MSI-H or dMMR tumors⁵⁵

